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Abstract

This paper studies how the stress test design (in particular its strength and frequency)

affects its effectiveness in providing information to persuade the bank’s stakeholders to coor-

dinate on not “attacking” the bank to decrease the probability of bank failure during distress.

The stakeholders are privately informed and move sequentially. We characterize all robustly

persuasive stress tests, under which, even in the worst equilibrium, all bank stakeholders disre-

gard their private information and perfectly coordinate their actions based on the test results

(“pass” or “fail”). We show that testing the bank more frequently can substitute the role of an

increased test strength in making the stress test result persuasive. We then characterize the

optimal frequency and investigate how it depends on macroeconomic conditions, the bank’s

idiosyncratic characteristics, as well as the endogenous maturity choices of banks. We further

examine how other regulatory measures may complement the stress test policy.
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1 Introduction

Runs by institutional investors such as money market funds contributed to the onset of the global

financial crisis in 2008 (Brunnermeier, 2009). Runs are rooted in the coordination problem among

the creditors (Diamond and Dybvig, 1983), and, therefore, creditors’ information and uncertainty

about the bank’s fundamental, as well as other creditors’ decisions, are critical in determining the

run and resulting likelihood of a crisis (Goldstein and Pauzner, 2005; Rochet and Vives, 2004).

Following the crisis, bank supervisors implemented new regulatory measures —- stress tests, which

provide critical information to the market in order to avert runs and maintain financial stability.

Some examples of such a policy include the Dodd Frank Act Stress Tests (DFAST) conducted by

the Federal Reserve and EU-wide stress tests conducted by the European Banking Authority (EBA)

where the supervisors evaluate the banks’ capital under adverse scenarios and publicly disclose the

results.

In practice, bank stress tests have a pass/fail design and are conducted typically on a monthly,

quarterly, or semi-annual basis. While the other dimensions of stress test design (e.g., binary

result) have been well investigated theoretically (See, for instance, Goldstein and Huang (2016) and

Inostroza and Pavan (2021)), little attention has been drawn to consider the optimal frequency of

stress test. In this paper, we set out to fill this gap by studying the optimal design of stress test

frequency in conjunction with its strength.

We build a model of dynamic coordination to examine the impact of frequent stress tests, which

publicly disclose information at regular time intervals. More specifically, in our model, the bank

may face a shock in the future. The distress lasts for a fixed period of time, normalized to [0, 1],

and during this time, a mass 1 of agents sequentially make their decisions. The shock may trigger

a run, which further worsens the bank’s fundamentals and may lead to bank failure. The agents

have incomplete information regarding the bank’s fundamentals, and they do not observe the past

actions, while the stress test reveals partial information regarding the fundamental and past actions.

Let us start with the benchmark — a one-time stress test policy, which at the beginning of the

distress (time 0) discloses whether the bank’s fundamental θ is high enough to sustain k proportion

of attack from its stakeholders. Notice that Although the agents move sequentially, since they do

not receive any new information over time, the game is the same if they were moving simultaneously.

It is well known that in such a game, the worst equilibrium is such that an agent attacks if either

the bank fails the stress test or the bank passes the stress test but the private signal si < ŝ, for

some cutoff ŝ. This means there exists a cutoff θ̂ ≥ k such that the bank will survive in the end iff

θ ≥ θ̂.

Notice if all the agents ignore their private signals and perfectly coordinate their actions based

on the stress test result, then an agent will do the same. Therefore, there is always an equilibrium

with θ̂ = k. If θ̂ > k, then it must be that the corresponding marginal agent (with signal ŝ) is
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indifferent between attacking and not attacking. We are interested in the worst equilibrium, that

is the equilibrium with highest θ̂.

To see how more tests may help, consider two tests — one at the beginning and one after half of

the agents have made their decisions. Each test discloses whether the residual fundamental strength

can sustain k proportion of attack from the agents yet to make a decision. We will call the agents

moving after the second test group 2 and the agents moving before the second test group 1. It is

intuitive that he worst equilibrium will be as follows. An agent in group n = 1, 2 attacks if the bank

fails any of the tests so far, or if it passes all the tests so far but si < ŝn. Given the cutoff strategies

there exists k ≤ θ1 ≤ θ̂ such that the bank survives iff θ ≥ θ̂. However, unlike under single test, the

bank passes the first test but fails the second test when θ ∈ [k, θ1).

Since θ1 ≥ k, the second group learns more than the first group when they see that the bank

has passed both tests. This makes them more optimistic about the bank’s survival, and hence, if

the bank passes both tests, there is less attack from group 2 compared to group 1. For any cutoff

θ̂, the corresponding marginal agent ŝ under single test policy is such that the aggregate attack at

θ = θ̂ is exactly θ̂. In contrast, under two tests, the aggregate attack from group 1 is higher and

group 2 is lower than θ̂. This requires

ŝ1 ≥ ŝ ≥ ŝ2.

However, this means that the marginal agent in group 1 is more optimistic about the survival of

the bank than the marginal agent under single test policy.

Finally, we show that if θ∗ is the highest equilibrium fundamental cutoff under a single test

policy, then for any θ̂ > θ∗, the corresponding marginal agent ŝ strictly prefers not attacking, which

implies the same holds for the marginal agent (ŝ1) in group 1 under two-tests policy. Therefore,

the worst θ∗ can only be lower under two tests. In fact, we show that it is strictly lower and the

argument follows from the fact that the second group learns strictly more.

A general stress test policy Γ = (N, k) with frequency N and strength k, conducts N tests

at regular interval of 1/N starting from 0, and publicly discloses whether the per-capita residual

fundamental is above the threshold k (pass) or not (fail). Given the stress test policy, we look

into perfect Bayesian equilibrium in monotone strategies and focus on the worst equilibrium —

the one with the maximum probability of failure. Consider an agent who moves after the n-th

test but before the next test (if there is one). We refer to these agents as group n agents. In the

worst equilibrium, an agent in group n runs if (1) the bank fails any of the tests so far, (2) the

bank passes all the tests so far but the private signal si < s∗n. Accordingly, there exists a weakly

increasing sequence

k = θ0 ≤ θ1 ≤ . . . ≤ θN−1 ≤ θN = θ∗

such that the bank passes the first n tests iff θ ≥ θn−1, and survives in the end iff θ ≥ θ∗.

In equilibrium, either group n is persuaded, that is, all the agents in group n prefer not running;
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or they are not persuaded, in which case, the marginal agent s∗n in group n is indifferent between

running and not running. Since, the agents moving later are more optimistic if the bank passes all

the tests thus far, they are less aggressive. This implies there is a last group that is not persuaded.

Notice that for any stress test policy γ = (N, k), if all the groups are persuaded, then an agent

will always follow the stress test result rather than her private signal. Therefore, there is always

an equilibrium with θ̂ = k. We call it the obedient equilibrium. However, there can be many

disobedient equilibrium. A stress test is robustly persuasive if in the worst equilibrium, all the

groups are persuaded.

Our main result is that for any frequency of stress test N , there is a threshold strength k∗(N)

such that a stress test Γ = (N, k) is robustly persuasive iff k > k∗(N). Moreover, k∗(N) is decreasing

and discrete convex.

Notice that a future stress test discloses information based on the endogenous attack from

the earlier groups, while the agents in the earlier groups decide whether to attack based on their

expectation of the effectiveness the future stress tests. Therefore, for any stress test policy Γ =

(N, k), the N thresholds (s∗n)
N
n=1 in the worst equilibrium are jointly determined. For any stress

test policy Γ = (N, k), we find a lower bound on the belief of the marginal agent in the last non-

persuaded group that the regime will survive — G(x,N, k), where x is the proportion of attack

from this group. We show that when k > k∗(N) this marginal agent strictly prefers not attacking

for any x, and hence, there cannot be a disobedient equilibrium. Moreover, if k ≤ k∗(N), we can

always construct an equilibrium where at least the first group is not persuaded. For higher N ,

assuming the the later groups will be persuaded, the excess fundamental required to pass the next

test is lower, making G(x,N, k) increasing in N , which in turn makes k∗(N) decreasing in N . We

further show that G(x,N, k) is quasi-concave in (N, k) making k∗(N) discrete convex.

Our result generalizes the findings in Goldstein and Huang (2016) and Basak and Zhou (2020).

Goldstein and Huang (2016) builds a static model and shows that the optimal stress test is a binary

public signal (pass or fail). This can be mapped to our model when restricting it to a one-time

disclosure, i.e., N = 1. The author shows there exists k∗(1) such that the test is robustly persuasive

as long as k ≥ k∗(1). Basak and Zhou (2020) show that when the debt structure of a bank

is sufficiently asynchronous, then the viability news is enough to avoid liquidity crisis caused by

panic-based runs. The public information of the continued viability of the bank can be interpreted

as a stress test with k = 0. Given sufficiently asynchronous debt structure, say N ≥ N0, the

required strength of test is k∗(N0) = 0, so that the continued viability news, by itself, is strong

enough to be persuasive. Our result nest these findings and give the complete characterization of

robustly persuasive stress tests for any frequency N .

The above results give us the trade-off between frequency and strength of stress tests. A stronger

test is harder to pass, and the regulator does not need to make the tests as strong if she can run

more tests. This means the bank is more likely to pass the test. This accounts for the marginal
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benefit of increasing the frequency of tests. However, running more tests could be costly. Assuming

a convex cost, this trade-off helps us uniquely determine the optimal stress test policy.

This paper shows why frequency is an important dimension in designing the stress test policy. To

understand the policy implication, suppose that the market conditions worsens making it difficult

for the regulator to dissuade the agents from running. A regulator who cannot conduct more tests

will increase the strength of the stress tests under worse market conditions. However, if she can

increase the frequency, the optimal policy could be more frequent but more lenient tests. We

provide a numerical example illustrating this point in Section 6. Recently, European Securities

Market Authority (ESMA) issued guidelines for liquidity stress testing of Alternative Investment

Funds (AIFs) where funds are encouraged to conduct more frequent tests when there is a higher risk

of the adverse shock. The Federal Reserve in its stress testing and monitoring framework categorizes

banks based on their systemic importance and tests the more systemically important bank holding

companies more frequently. We show that these observations are consistent with our theory.

It is important to note that this theory of frequent tests is based on the assumption that

the agents move sequentially. If all the agents move simultaneously, then the regulator cannot

disclose any new information by conducting more than one test. This sequential move assumption

is motivated by the fact that during a distress, banks’ debts mature asynchronously, and creditor

run occurs in a dynamic manner (He and Xiong, 2012). For simplicity, in our benchmark setup,

we assume that when the regulator conducts multiple tests, there are always some debts maturing

between two tests. However, in practice, the bank may have debts maturing at M different dates.

Therefore, if the regulator conducts more than M tests, this assumption is no longer true. In

this sense, the bank’s debt structure M imposes an upper bound on how many effective tests the

regulator can run. To understand the effect of this constraint, we extend our model by introducing

a first stage where the bank optimally chooses the asynchronicity of the debt maturity structure

M . Since the bank does not internalize the social cost its failure imposes on the financial system,

in equilibrium, it chooses a debt structure that is less asynchronous than socially optimal, while

the regulator chooses the optimal frequency same as M and conducts the tests right before each

maturity dates. We also show that alternative policies such as Liquidity Coverage Ratio (LCR) may

make the bank’s choice more aligned with the socially optimal, and thus, improve social welfare.

The rest of the paper is organized as follows. We begin with setting up the model and describing

the stress test policy in Section 2, in Section 3 with the help of an example we explain how more

frequent tests help in dissuading the agents from running, Section 4 and Section 5 provide a formal

exposition of our main results. In Section 6 we describe some regulatory policy implications of

our theory. In Section 7 we present an application of our theory for financial institutions with

asynchronous debt structure and the constraint it imposes on the frequency of stress tests, followed

by the conclusion.
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2 Model

The economy consists of a bank, a continuum of stakeholders (agents) of banks and a regulator. An

adverse shock may arrive at a future date. The bank’s stakeholders have incomplete information

regarding the severity of the shock and the resulting bank’s asset quality. Stakeholders may attack

(such as stop lending to the bank, increase the collateral requirements for the bank’s borrowing,

refuse to invest in the bank or short the bank equities), which can further deteriorate the bank’s

balance sheet and possibly result in bank failure. The regulator conducts stress tests to provide

valuable information publicly to the stakeholders in order to mitigate the endogenous attack and

promote financial stability. We focus on two aspects of the tests: (1) frequency — how often to

conduct the tests, (2) strength — how difficult it is to pass the tests. Below, we describe the details

of our model.

2.1 The bank and its stakeholders

An adverse shock arrives at some future date T0 with probability π ∈ (0, 1). Upon its arrival, we

denote the fundamental of bank by a random variable θ. The arrival of this adverse shock is publicly

observable but the realization of θ is not. We assume that θ is exogenous and that nature draws

θ from a commonly known prior U [θ, θ]. The larger the shock the lower the θ. We normalize the

duration of the distress to 1. If the bank can survive the attack between T0 to T1 = T0 + 1, then

the bank is “out of woods.”

A unit mass of stakeholders referred to as agents, indexed by i ∈ [0, 1], move sequentially: each

agent i decides of whether to attack (ai = 1) or not (ai = 0) at time T0 + i. Without loss of

generality, we normalize T0 to 0 and therefore, the distress time is from t = 0 to 1.1

Notice that if the agents move simultaneously, rather than sequentially, then a regulator cannot

disclose any new information by conducting more than one test, making the concept of frequent

test meaningless. The sequential move naturally arises when bank has asynchronous debt structure,

and the creditors decide whether to rollover when their debt matures. For simplicity of exposition,

in our benchmark setup, we do not explicitly model the bank’s choice of debt structure. In Section

7, we consider a bank that optimally choose the debt structure, and show how the result can be

extended, and what are the implications of this endogenous debt maturity choice.

1In practice, the shock arrival time T0 can be stochastic. However, whether it is deterministic or stochastic, or
the precise value of T0 does not matter in our model as our analysis focuses on the consequences after the arrival of
the shock.
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2.2 Deterioration of bank’s fundamental

If the shock arrives, nature selects the bank’s fundamental θ. The bank’s fundamental deteriorates

iff agents attack the bank. We model the deterioration of the fundamental as follows. The initial

fundamental is θ0 = θ and the residual fundamental after time t ∈ [0, 1] is

θt ≡ θ0 − wt = θ −
ˆ t

i=0

1{ai = 1}di, (1)

in which wt ∈ [0, t] is the cumulative attack until time t. If θ1 = θ − w1 ≥ 0, the bank survives the

exogenous shock and all endogenous attack; otherwise, the bank fails.

Dominance Regions It is possible that the shock is so severe —i.e., θ < 0 — that the bank will

fail even if no agent attacks. It is also possible that the shock is so mild —i.e., θ ≥ 1 — that the

bank survives even when all agents attack. We call [θ, 0) the lower dominance region and [1, θ] the

upper dominance region.2

2.3 Stress Test: A disclosure policy

The regulator commits to a stress test policy Γ = (N, k), which is characterized by its frequency

N ∈ Z+ and its strength k ∈ [0, 1]. The regulator tests the bank’s fundamental N times at uniform

intervals of length tN ≡ 1
N
, and each test has a per-capita strength k ∈ [0, 1].

Definition 1 (Stress Test Policy) A stress test policy Γ = (N, k) sends a public binary signal

ζn at time (n − 1)tN for n = 1, 2, . . . N . The n-th test reports at time t = (n − 1)tN whether the

bank’s per-capita fundamental is greater than k (“pass”, ζn = P) or not (“fail”, ζn = F); that is,

ζn ≡

P, if θ(n−1)tN

1−(n−1)tN
≥ k

F, otherwise
(2)

At any time t, if a stress test of strength k ∈ [0, 1] is conducted, then the regulator tests

whether or not the bank’s fundamental at time t is sufficient to sustain the attack from k fraction

of remaining agents who have not yet made their decisions; that is, whether or not θt ≥ k(1 − t).

Under a frequency of N , these tests are scheduled at t = (n − 1)tN for n = 1, 2, . . . , N . Unlike

the first test, which tests the exogenous fundamental θ at time 0, each subsequent test discloses

some partial information about the exogenous fundamental θ as well as the endogenous attack that

occurred before the test (excluding the exact time of disclosure).

2We treat θ and θ as primitives. In Section 7, we consider alternative regulatory policies that can affect this range
of possible θ.

6



Under a policy Γ = (N, k), the agents who move at time [(n − 1)tN , ntN) see the same stress

tests results. We refer to these agents as group n agents, for n = 1, 2, . . . , N . Put differently, agent

i ∈ [0, 1) belongs to group ⌊iN⌋+ 1, and agent i = 1 belongs to group N .

2.4 Agents’ Problem

After the regulator commits to a policy Γ, the agents play a dynamic coordination game, in which

they sequentially decide whether or not to attack. If an agent believes that the bank will fail

(will not fail) for sure, then attacking (not attacking) would be an optimal choice. As agents are

uncertain about whether the bank can survive the exogenous shock as well as the endogenous attack,

we assume that each agent would not attack if and only if they believe that the bank will survive in

the end with a probability at least p, for some p ∈ (0, 1). The parameter p captures the willingness

to attack. When p is higher, agents are more inclined to attack.3,4

Exogenous Private Information Upon the arrival of the liquidity shock, each agent receives a

noisy private signal regarding the bank’s fundamental,

si = θ + σϵi,

where the noises (ϵi)i are independent across agents conditional on θ and identically distributed

according to ϵi ∼ F . We assume that F has support [−1/2, 1/2], and it admits a density f , which is

symmetric around 0, and f(x) > 0 for x ∈ [−0.5, 0.5] and 0 otherwise. σ scales the noisiness of the

private information. As is standard in the global games literature, we assume θ < −σ and θ > 1+σ.

Under this assumption, the posterior belief of agent with any private signal si ∈ S = [−σ
2
, 1 + σ

2
] is

simply F ( θ−si
σ

).

Assumption 1 f(.) is log-concave.

3To see where the model primitive p comes from, consider the following example (as in Rochet and Vives (2004)).
The payoff difference from rolling over and withdrawing is

∆u(a−i, θ) = u(ai = 1, a−i, θ)− u1(ai = 0, a−i, θ) = b1(θ1 ≥ 0)− c1(θ1 < 0),

where b = r − 1 > 0 is the benefit she gets if the bank survives in the end (promised return r rather than 1) and
c = 1 − d > 0 is the cost she bears if the bank fails in the end (recovery value d rather than 1). Under this payoff
specification, an agent would roll over instead of withdrawing if and only if she believes that the probability of
bank survival is at least p ≡ c

b+c = 1−d
r−d ∈ (0, 1). It is worth noting that, in practice, the payoff the agents receive

when the bank fails can be more nuanced (which may depend on the exact amount of withdrawal as well as the
bank’s fundamental θ). As long as there is a threshold belief p that can convince the agents to roll over, the exact
specification plays no role for our main analysis.

4Notice that the agents only decide whether to attack or not. We assume that agents cannot trade their claims on
the bank’s assets among themselves or in any market. In practice, one can think of this assumption as if the market
for these claims has broken down in the aftermath of the adverse shock, e.g. the frozen inter-bank markets in 2008.
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This assumption gives us that the belief of an agent with the higher signal is ranked higher

according to the likelihood ratio. Moreover, the ranks remain the same way regardless of any public

disclosure.5

These signals are exogenous, and private. The regulator does not observe these signals. However,

notice that the signals are about the fundamental at the beginning when the shock arrives. Unlike

the agents, the regulator can check the the residual fundamental from time to time and disclose

additional information via stress tests.

Endogenous public information (stress test results) Under a policy Γ = (N, k), agent i in

group n observes the first n stress test results ζn := {ζ1, ζ2, . . . ζn}. Let Ωn := {P,F}n be the set of

all public information from the stress test that can be observed by group n agents.

Strategy, Solution Concept, and Adversarial Selection The strategy of agent i in the group

n is a mapping ρi : S×Ωn → [0, 1], whereby ρi(si, ζ
n) denotes the probability that an agent attacks.

We adopt the perfect Bayesian equilibrium (PBE) in monotone strategies as our solution concept

(henceforth referred to as equilibrium) for the dynamic coordination game played by the agents.

Definition 2 (Monotone Strategy) A strategy ρi is said to be monotone if and only if

1. the agent is less likely to attack when her private signal is higher — i.e., ρi(s
′
i, ζ

n) ≤ ρi(si, ζ
n)

for any s′i > si and any ζn ∈ Ωn; and

2. the agent is less likely to attack when the bank passes a stress test rather than fails — i.e.,

ρi(si, ζ
n−1 ∪ {ζn = P}) ≤ ρi(si, ζ

n−1 ∪ {ζn = F}) for any si ∈ S and ζn−1 ∈ Ωn−1.

We will characterize the equilibrium in the next Section. Here, for expositional purpose, we

introduce the necessary notations in an abstract way. Given a stress test policy Γ, let ρ̂(Γ) be an

equilibrium profile of strategies, and Pf (Γ, ρ̂(Γ)) be the ex-ante probability of bank failure in this

equilibrium. There are multiple equilibria. Let E(Γ) be the set of equilibria.

We consider adversarial selection. Under any policy Γ, we focus on the worst equilibrium,

denoted by ρ∗(Γ), which has the highest probability of failure, that is, Pf (Γ,ρ
∗(Γ)) ≥ Pf (Γ, ρ̂(Γ))

for all ρ̂(Γ) ∈ E(Γ). We define

Pf (Γ) ≡ Pf (Γ,ρ
∗(Γ)).

as the probability of failure under stress test policy Γ in the worst equilibrium.

5Formally, if f(.) is log-concave, then for any s
′′
> s

′
, p(θ|s

′′
)

p(θ|s′ ) = f((θ−s
′′
)/ρ)

f((θ−s′ )/ρ)
is increasing in θ (assuming the

denominator is positive). That is, the posterior beliefs are ranked according to likelihood ratio. This implies for any

event A, p(θ|s
′′
,θ∈A)

p(θ|s′ ,θ∈A)
is also increasing in θ (See Theorem 1.4.6. in Müller and Stoyan (2002)).
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2.5 The Regulator’s Problem

The regulator is an information designer, who before the game begins, commits to a stress test

disclosure policy. If the shock arrives, then at the specified dates, the regulator conducts the

tests and publicly discloses the pass/fail results. These tests reveal some partial information which

influences the distribution of the posterior beliefs of agents, which in turn, affects their equilibrium

strategies. It is important to note the following four features of this information design problem.

First, we assume that the regulator does not know the private information the agents receive, and

she only chooses a special type of disclosure policy called the stress tests, which is a dynamic, public,

and binary disclosure. Second, the stress test policy we study here is an endogenous disclosure since

the results from stress tests depend not only on the exogenous fundamental θ but also on the agents’

choices wt. Third, the regulator anticipate that for any stress test policy she designs, the agents

will play the worst equilibrium in the resulting game (adversarial design). Finally, we assume that

due to reputational concern, the regulator only chooses a stress test policy with no false-positives,

that is, never gives a pass to a bank which, in the worst equilibrium, does not survive in the end.6

The regulator is a social planner who cares about the bank’s payoff as well as the externality the

bank imposes on the financial system when it fails. If the bank survives, it retains a charter value

of B > 0; otherwise, if it fails, this value is forfeited. In addition, bank failure incurs a social cost

of χ > 0. Recall that the shock arrives with probability π. Therefore, for any given policy Γ and

based on the worst-possible equilibrium under this policy, the bank fails with probability πPf (Γ)

and it will survive with probability (1 − π) + π(1 − Pf (Γ)). We define the regulator’s expected

payoff for any given policy Γ as

Λ(Γ) ≡ ((1− π) + π(1− Pf (Γ))B − πPf (Γ)χ− C(Γ), (3)

where C(Γ) is the cost of conducting stress test Γ. We assume that the cost of running the stress

tests C(Γ) is not sensitive to the strength k but it is increasing and convex in the frequency

N . Therefore, abusing the notation, we will write the cost as C(N) and the “marginal” cost

∆C(N) ≡ C(N + 1)− C(N), which is strictly positive and weakly increasing.

6If a bank that is issued a passing grade, fails, then it may shake the market’s opinion of the regulator’s competence
in screening bad banks from good ones and makes future regulatory disclosures ineffective. In this sense, false-positive
tests causes a tremendous reputational damage, and so the regulator avoids such policies at all costs. See the following
excerpt from Hirtle and Lehnert (2015),
“Banks that show relatively high post-stress capital ratios would presumably be perceived as good risks by investors.
The sudden collapse of such a bank, perhaps caused by an idiosyncratic event, or in the face of a macro stress less
severe than the stress scenario, could shake confidence in the entire stress testing regime, calling into question not
just the resiliency of other participating banks, but also of the competence of the supervisory authorities. Ultimately,
confidence could be sufficiently diminished to precipitate a coordination failure among investors and a rush to pare
exposures to the banking system.”
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2.6 Interpretations/Discussions of modeling choices

Sequential Moves: A crucial aspect of our model of dynamic coordination is the sequential

nature of agents’ moves. Such sequential moves naturally arise in practice. One example is the

debt structure of a financial institution featuring (1) maturity mismatch and (2) asynchronous debt

maturity dates. In Section 7, we provide such an example and analyze the stress test policy when

the bank chooses the debt structure. Another practical interpretation is that a bank with maturity

mismatch is sequentially approaching atomistic investors to fund its existing asset worth θ0. The

investors are privately informed regarding the bank’s asset value and will invest $1 if they do invest.

If however, they decide not to invest, the bank must liquidate the unfunded proportion of the asset.

Therefore, at any time t ∈ [0, 1], the bank’s fundamental or asset value is θt = θ0 −
´ t
0
aidi.

Fundamental: The bank’s fundamental θ can be broadly interpreted. For a bank facing an

adverse liquidity distress event, we can interpret the fundamental as the liquidity position of the

bank. This includes the amount of cash it can raise by borrowing against the long-term asset,

the net value of High-Quality Liquid Assets (HQLA), or any emergency liquidity support the bank

may have access to from other financial institutions or the regulator. This liquidity erodes as the

bank fails to refinance its debts. Alternatively, θ may also be interpreted as the value of the assets

relative to the bank’s funding. When θ is thus interpreted, investors who short the bank’s equity

or creditors who decide not to lend reduce this net value of the bank’s assets.

Stress Tests: The stress test disclosure policy may provide information regarding the bank’s

liquidity position as in liquidity stress tests, or the bank’s asset values as in capital stress tests.

Liquidity Mismatch Index: The stress test policy proposed in this paper can be interpreted

along the lines of the Liquidity Mismatch Index (LMI) in Bai, Krishnamurthy and Weymuller

(2018) for conducting liquidity stress tests. The index is constructed under the assumption that in

a liquidity distress event, the creditors will extract maximum liquidity and the bank will maximize

the liquidity that it can raise. Thus, the LMI index captures the maximum assistance the bank

may require. In our setting, the LMI index at time t is LMIt = (1− t− θt), i.e., the maximum

withdrawal (1− t) from all the remaining agents, net of the liquid holdings (θt) of the bank. Recall

that the bank passes the n-th stress test at t = (n − 1)tN iff the per-capita residual liquidity is

sufficiently high, i.e., θt ≥ k(1 − t), which is equivalent to LMIt ≤ (1 − k) (1− t) . Put differently,

passing a stress test at time t means LMIt (the maximum assistance the bank may need at time t)

is sufficiently low.

Capital Stress Test: The fundamental θt can be the profitability of the bank’s assets at time

t, after some of the creditors have made their decision, and the stress tests are capital stress tests
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as in Dodd-Frank Act Stress Tests (DFAST). The capital stress tests in essence disclose whether

the bank has sufficient equity capital or funding to survive a shock to its asset values. If Dt is the

amount owed to the remaining creditors, then the equity position Et = θt−Dt. Therefore in capital

stress tests, the disclosure regarding equity ratios e.g. capital adequacy ratio

Et

θt
> l ≡ θt >

1

1− l︸ ︷︷ ︸
=k

Dt

under shocks to the bank’s assets profitability, can be mapped to the stress test policy in this paper.

The creditors in this interpretation may also include long-term creditors, who are concerned with

the profitability of the bank’s assets as opposed to merely its liquidity position.

Agents’ Prior: The investors’ prior regarding θ has support [θ, θ]. For most part, we consider

this as the premitive of the model. In Section 7 we show how other regulatory policies such as the

Liquidity Coverage Ratio, may increase θ and improve social welfare by enhancing the stability of

the financial system.

Stress Test Strength: The strength of the stress test is akin to the stress scenarios for stress

tests. A higher strength implies that the stress scenario is more severe and it will be more difficult

for banks to pass such a stress test. Moreover, note that π does not directly affect the strength of

the test for a given N , i.e. the severity of the stress scenario for a given frequency does not depend

on the likelihood of the stress event. This is in line with the current methodology behind stress

tests conducted by the Federal Reserve.7

3 A simple example

Before we establish the formal result, we resort to a simple example to illustrate the usefulness

of frequent tests. Recall that under one-time stress test (1, k), the game boils down to a static

bank-run game (as in Goldstein and Huang (2016)). This is our benchmark setup. We will add one

more test — policy (2, k) and show how it increases the probability of survival in the worst case.

Let’s start with the single test policy (1, k). It is well known that the worst equilibrium is in

cutoff strategies — attack if the bank fails the test, or if the bank passes the test but si < ŝ. This

means there exists k ≤ θ̂ such that the bank fails the test and does not survive if θ < k; the bank

7See the following excerpt from Federal reserve disclosure regarding the Dodd-Frank Act Stress Tests, https:
//www.federalreserve.gov/newsevents/pressreleases/bcreg20180201a.htm “The adverse and severely adverse
scenarios describe hypothetical sets of events designed to assess the strength of banking organizations and their
resilience. They are not forecasts.”
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passes the test but does not survive if θ ∈ [k, θ̂); the bank passes the test and survive if θ ≥ θ̂,

where θ̂ is such that the aggregate attack at θ = θ̂ is exactly θ̂:

F (
ŝ− θ̂

σ
) = θ̂

If the agents do not attack whenever the bank passes the test (ŝ = k−σ/2), then θ̂ = k; otherwise,

θ̂ > k. Notice if all the agents ignore their private signals and perfectly coordinate their actions

based on the stress test result, then an agent will do the same. Therefore, there is always an

equilibrium with θ̂ = k. If θ̂ > k, then it must be that the marginal agent (with signal ŝ) is

indifferent between attacking and not attacking — that is,

P (θ ≥ θ̂|ŝ, θ ≥ k) = p.

Notice that the LHS is the belief of the marginal agent (ŝ) that the bank will survive (θ ≥ θ̂) after

learning that the bank has passed the test (θ ≥ k), and indifference requires that this belief is

exactly p.

We are interested in the equilibrium with the highest θ̂. Suppose that θ∗ is the worst equilibrium

fundamental cutoff under policy (1, k) and θ∗ > k. The reason θ∗ is the worst equilibrium is that

for any cutoff θ̂ > θ∗, the corresponding marginal agent (satisfying the first equality) believes that

the probability of survival is strictly above p, and hence, strictly prefers not attacking.8

Next, consider policy (2, k). Similar to (1, k), the worst equilibrium will be as follows. An agent

in group n = 1, 2 attacks if the bank fails any of the tests so far, or if it passes all the tests so far

but si < ŝn. Given the cutoff strategies there exists k ≤ θ1 ≤ θ̂ such that the bank fails the first

test iff θ < k. When the bank fails the first test, all the agents in group 1 attacks, which means the

bank also fails the second test, and all the agents in group attack, and hence, the bank does not

survive in the end. The bank passes the first test but fails the second test and does not survive iff

θ ∈ [k, θ1). The bank passes both tests but still does not survive in the end iff θ ∈ [θ1, θ̂), and the

bank survives in the end iff θ ≥ θ̂.9

It is easy to see that as in the case of (1, k) policy, there is an equilibrium with ŝ1 = ŝ2 = k−σ/2,

which implies θ̂ = θ1 = k. That is, if all the agents ignore their private signals and perfectly

coordinate their actions based on the stress test result, an agent will do the same. Consider an

equilibrium with θ̂ > k. Notice that when the agents in the second group see that the bank has

passed both tests, they learn more than the agents in the first group (θ1 ≥ k). This makes the

second group more optimistic than the first group regarding the probability of survival, and hence,

8Otherwise, there is θ̂ > θ∗ where the equality holds, which gives us a worse equilibrium.
9Notice that it is possible that the bank may pass the first test but fails the second test (because enough agents

attack from group 1). However, in the worst case, the bank can never fail the first test but pass the next one (since
all the agents from group 1 will attack).
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for any θ such that the bank passes both tests (θ ≥ θ1), there will be less attack from group 2 than

from group 1. Therefore, for any θ̂, the marginal signals must be such that

ŝ1 ≥ ŝ ≥ ŝ2.

Moreover, if θ̂ > k, then at least some agents from the first group will attack the bank even when

it passes the first test. In this equilibrium, the marginal agent (ŝ1) must be indifferent between

attacking and not attacking — that is, P (θ ≥ θ̂|ŝ1, θ ≥ k) = p.

Below, we provide a numerical example to illustrate that in the worst case, the bank is more

likely to survive under policy (2, k) than under policy (1, k). Mayur will add an example with (1, k)

and (2, k) and show that the worst eqm θ∗ falls.

In fact, this above comparison hold true in general. Suppose θ∗ is the worst equilibrium fun-

damental cutoff under (1, k). We argue that there cannot be an equilibrium fundamental cutoff θ̂

under policy (2, k) where θ̂ ≥ θ∗. The argument follows two simple steps. First, for any θ̂ ≥ θ∗,

the corresponding marginal signal ŝ1 of group 1 under (2, k) policy must be strictly higher than

the marginal signal ŝ under (1, k) policy (since more attack from group 1). Second, if ŝ prefers not

attacking (since θ∗ is the worst equilibrium), then ŝ1 strictly prefers not attacking, and hence θ̂

cannot be an equilibrium.

More formally, notice that when θ = k and k < θ∗, the proportion of attack from group 1 is at

least k. Therefore, when θ = k, the bank will pass the first test but fail the second test (θ1 > k).

Accordingly, the second group is strictly more optimistic than the first group when they see that

the bank passes both tests, and thus, for any for θ ≥ θ1, the attack from the second group is strictly

less than the attack from the first group. This implies that when θ = θ̂ and θ̂ ≥ θ∗ ≥ θ1 > k,

the proportion of attack from group 1 must be strictly higher than θ̂. Therefore, the corresponding

marginal agent in group 1 (ŝ1) must be such that

F (
ŝ1 − θ̂

σ
) > θ̂.

Recall the above relation holds with equality under policy (1, k), which means that for any fun-

damental cutoff θ̂ ≥ θ∗, the corresponding marginal signals are such that ŝ1 > ŝ > ŝ2 (Step 1).

Accordingly,

P (θ ≥ θ̂|ŝ1, θ ≥ k) > P (θ ≥ θ̂|ŝ, θ ≥ k) ≥ p.

The last inequality follows since θ∗ is the worst equilibrium under (1, k) and θ̂ ≥ θ∗, and the first

inequality follows since ŝ1 > ŝ. Therefore, ŝ1 strictly prefers not attacking (Step 2), and hence, the

fundamental equilibrium cutoff under (2, k) must be strictly lower than θ∗.

Goldstein and Huang (2016) shows that if k is sufficiently high (k > k∗), then P (θ ≥ θ∗|s∗, θ ≥ k)
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is always above p. This means there is no equilibrium with θ∗ > k. Put differently, if k > k∗, then

even in the worst case, the agents ignore their private signals and perfectly coordinate their actions

based on the stress test result. We will argue that as the regulator conducts more tests, k∗ falls.

4 Equilibrium

4.1 Cutoff Equilibrium

In this section, we study the agents’ problem given a stress test policy Γ. Recall that the agents are

privately informed and they play a dynamic coordination game. Our equilibrium concept is PBE

where the agents play monotone strategies. Under monotone strategies, an agent is less likely to

attack if her private signal is higher (ρi is decreasing in si), and if the bank passes a test n′ ≤ n

rather than fails. Therefore, if the bank survives under θ
′
, then it will also survive under θ

′′
> θ

′
.

This gives us a threshold θ∗ such that the bank survives iff θ ≥ θ∗. We focus on the worst equilibrium

(θ∗ higher than all other equilibria).

Lemma 1 The worst monotone PBE must have the following two properties. (1) if ζn is such that

ζn′ = 0 for some n′ ≤ n, then ρi(si, ζ
n) = 1 for all si ∈ S. (2) if ζn is such that ζn′ = 1 for all

n′ ≤ n then ρi(si, ζ
n) = 1{si < s∗n}.

This result straightforward for a one-time stress test policy. The above lemma only extends

the argument for the general stress test policy. See the appendix for the formal proof. Let Ẽ(Γ)
be the set of equilibrium that satisfies the above two properties. Since we are interested in the

worst equilibrium ρ∗(Γ), and ρ∗(Γ) ∈ Ẽ(Γ) ⊆ E(Γ), it is without loss of generality to discard

the equilibrium in E(Γ) \ Ẽ(Γ). Henceforth, we only focus on equilibrium in Ẽ(Γ). Notice that

an equilibrium in Ẽ(Γ) can be described simply by N cutoffs s∗ := {s∗n}Nn=1. Abusing notation,

henceforth, we refer to an equilibrium as s∗ rather than ρ∗. Given s∗, there exists θ∗ such that the

bank survives in the end iff θ ≥ θ∗. ŝ ∈ Ẽ(Γ) is the worst equilibrium under stress test policy Γ if

θ∗(ŝ, .) ≥ θ∗(s∗, .) for all s∗ ∈ Ẽ(Γ). We define θ̂(Γ) ≡ θ∗(ŝ,Γ) and

Pf (Γ) ≡ P(θ < θ̂(Γ)) =
θ̂(Γ)− θ

θ − θ
. (4)

Thus, under the stress test policy Γ, in the worst equilibrium, the regime survives iff θ ≥ θ̂(Γ) and

the ex-ante probability that the bank survives is (1− Pf (Γ)).
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4.2 Characterization of Equilibrium Cutoffs

For any s∗, there exists a weakly increasing sequence

k = θ0 ≤ θ1 ≤ . . . ≤ θn−1 ≤ θN = θ∗

such that the bank passes the first n tests iff θ ≥ θn−1, and survives in the end iff θ ≥ θ∗.

Definition 3 (Persuading group n) Under the stress test policy Γ and an equilibrium s∗(Γ) ∈
Ẽ(Γ), group n is persuaded if, in this equilibrium, the agents in the group n never attacks if the bank

passes the first n stress tests, that is, s∗n = θn−1 − σ/2.

Suppose that under stress test policy Γ = (N, k), there is an equilibrium s∗(Γ) ∈ Ẽ(Γ) such that

some group n = 1, 2, . . . , N is not persuaded. This means the policy Γ cannot be robustly persuasive

(See definition 4).

If under equilibrium s∗, group n is persuaded, then by definition, s∗n = θn−1 − σ/2. Since, an

agent with signal s∗n = θn−1 − σ/2 does not believe that θ can be higher than θn−1, the only way

she is persuaded is if θ∗ = θn−1. This means once the bank passes the nth test, it will pass all the

subsequent tests and survive in the end. Therefore, for any s∗, there exists n ∈ {1, 2, . . . , n,N + 1}
such that all the groups starting from n are persuaded. If no group is persuaded, we use the

convention that n = N + 1.

If under s∗ group n is not persuaded, then an agent i in group n wants to attack iff si < s∗n.

Notice that she believes that the bank will survive with probability

P (θ ≥ θ∗|si, θ ≥ θn−1) =
F
(
si−θ∗

σ

)
F
(

si−θn−1

σ

) .
It follows from Assumption 1 that this belief is increasing in si. If group n is not persuaded then it

must be that the marginal agent s∗n believes that the probability of survival is p.

Consider a non-persuaded group n < n. Note that since θn is weakly increasing, s∗n is weakly

decreasing in n (follows from the indifference condition and Assumption 1). That is, there is less

attack from later groups. If a group n is not persuaded, then when θ = θn−1, the proportion of

attack from group n must be strictly above k. Otherwise, since there are even fewer attacks later,

once the bank passes the n-th test, it will pass all the subsequent tests and survive in the end, that

is, θn−1 = θ∗. This contradicts the fact that group n is not persuaded. This implies that as long as

group n is not persuaded, the (n+ 1)-th test reveals new information θn > θn−1, and when θ = θn,

the size of attack from the first n group leaves k per-capita residual fundamental.

Proposition 1 (Equilibrium) Given any stress test policy Γ, s∗ = {s∗n}Nn=1 constitutes an equi-

librium if there exists n(s∗) ∈ {1, . . . , n,N + 1} such that all groups n ≥ n are persuaded, that is,
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s∗n = θn−1 − σ
2
, and for any non-persuaded group n ≤ n − 1, s∗n is such that the marginal agent is

indifferent between attacking and not attacking

F
(

s∗n−θ∗

σ

)
F
(

s∗n−θn−1

σ

) = p, (In)

where the threshold for passing the n-th test θn−1 is such that

θn−1 −
1

N

n−1∑
n′=1

F

(
s∗n′ − θn−1

σ

)
= k

(
1− n− 1

N

)
(ζn)

and the bank survives in the end if

θ∗ = θn−1. (S)

The formal proof is relegated to the appendix. The result follows from the argument preceding

the proposition. Notice that when θ = θn−1 the attack from the first (n − 1) groups leaves k

per-capita residual fundamental (See equation (ζn)). Thus, when the bank passes the n-th test,

the agents in group n learn that θ ≥ θn−1. If they are not persuaded, then marginal agent s∗n

must believe that the probability that the bank will survive is p (See equation (In)). If they are

persuaded, then all the subsequent groups must be persuaded, that is, n = n, and θ∗ = θn−1 (See

equation (S)). If no group is persuaded then we use the convention that θ∗ = θN .

Under the policy Γ = (N, k), if there exists equilibrium s∗ ∈ E(Γ) such that n(s∗) = 1, then

under this equilibrium, all the agent in all the groups disregard their private signal si and coordinate

on the stress test results. This equilibrium is referred to as obedient equilibrium. The next corollary

states that, under any stress test policy Γ, there is always an obedient equilibrium.

Corollary 1 (Obedient Equilibrium) Under any policy Γ = (N, k), so∗(Γ) ≡ {so∗n = k−σ
2
}Nn=1 ∈

Ẽ(Γ). In this equilibrium, n(so∗) = 1 and θ∗(so∗,Γ) = k.

It is easy to see that if all the agents follow the strategy so∗, then whenever θ ≥ k, the bank will

pass the first test, and then all the subsequent tests and survive in the end. Therefore, any agent i

in any group n, regardless of his private signal, prefers not attacking when the bank passes all the

tests so far, which makes it an equilibrium.10

If the regulator is optimistic that when she chooses a policy Γ, the agents will always play this

obedient equilibrium, then she can simply choose Γ = (1, 0), and a solvent bank will never fail.

However, there can be many equilibria other than the obedient one. We refer to such as equilib-

10Notice that passing a test eliminates the lower dominance region, and makes it possible that all the agents
coordinate on the publicly disclosed information. This is a well-known result from a static setting, and we show here
that the same result carries over to our dynamic setting.
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rium as disobedient equilibrium. We follow the adversarial design approach where the regulator

anticipates that the agents will play the worst equilibrium with the highest fundamental cutoff θ̂(Γ).

5 Main Results

Our main objective is to identify the stress test policies that are robustly persuasive.

Definition 4 (Robustly Persuasive Stress Test) A stress test policy Γ = (N, k) is robustly

persuasive if, under the worst equilibrium σ∗(Γ), the agents ignore their private signals and coordi-

nate their actions based on the stress test results. That is,

ΓP := {Γ|ŝ(Γ) = so∗(Γ)}. (ΓP )

Since a disobedient equilibrium will have higher probability of failure, under a robustly persuasive

Γ, it must be that there is no disobedient equilibrium in Ẽ(Γ). By Corollary 1, when Γ ∈ ΓP ,

θ̂(Γ) = k and Pf (Γ) = P(θ < k). If θ ≥ k, the bank passes all the tests, and no agent attacks, and

the bank survives; and if θ < k the bank fails all the tests, and all the agents attack, and the bank

fails eventually. Below, we characterize all robustly persuasive stress tests policies, and then show

the trade-off between frequency and strength of stress tests.

5.1 Robustly Persuasive Stress Test

Theorem 1 For any N , a stress tests policy Γ = (N, k) is robustly persuasive iff k > k∗(N), where

k∗(N) := inf

{
k ∈ [0, 1] : min

x∈[k,1]

x

F
(
F−1(x) + x−k

Nσ

) ≥ p

}
. (5)

Thus, the set of robustly persuasive stress tests ΓP = {(N, k)|N ∈ Z+, k > k∗(N)}.

Proof. Consider any policy Γ = (N, k) that satisfies condition k > k∗(N) as defined in (5).

Suppose this policy is not robustly persuasive; that is, there exists some equilibrium s∗ such that

n(s∗) > 1. Under such equilibrium, the first n − 1 groups are not persuaded, while starting from

group n all the subsequent groups are persuased, that is, θ∗ = θn−1 (see Proposition 1). Below, we

show that such equilibrium cannot exist given k > k∗(N).

Recall from Proposition 1 that under equilibrium s∗, the bank passes the n-th test iff θ ≥ θn−1,

where θn−1 is as defined in equation (ζn). Rearranging this equation we get

θn−1 − k =
1

N

n−1∑
n′=1

(
F

(
s∗n′ − θn−1

σ

)
− k

)
.
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The LHS is the excess strength required to pass the n-th test compared to passing the first test,

while the RHS is the excess attack (in excess of k) from the first group (n−1) groups when θ = θn−1.

Taking the difference for two consecutive tests (n) and (n− 1), we get

θn−1 − θn−2 = (θn−1 − k)− (θn−2 − k) ≤ 1

N

(
F

(
s∗n−1 − θn−1

σ

)
− k

)
(6)

The inequality follows because θn−2 < θn−1, which means the excess attack from the first n − 2

groups is higher when θ = θn−2 than when θ = θn−1. The equality holds when n = 2. This is

because when n = 2, there is no group moving before the first test.

Consider group n − 1, the last group that is not persuaded. The marginal agent s∗n−1 must

believe that the bank will survive with probability p (See equation (In)), that is,

F
(

s∗n−1−θ∗

σ

)
F
(

s∗n−1−θn−2

σ

) =
F
(

s∗n−1−θ∗

σ

)
F
(

s∗n−1−θ∗

σ
+

θ∗−θn−2

σ

) = p. (7)

Since this is the last non persuaded group, if the bank passes the next test, it will survive in the

end — that is, θ∗ = θn−1. Let us define

x := F

(
s∗n−1 − θ∗

σ

)
as the proportion of attack from the last non persuaded group (n− 1) when θ = θn−1 = θ∗. We can

see from equation (6) that x > k and

θ∗ − θn−2 ≤
x− k

N
. (8)

Substituting this inequality (8) in (7), we get that the marginal agent s∗n−1 believes that the bank

will survive with probability at least

x

F
(
F−1(x) + x−k

Nσ

) =: G(x,N, k). (G)

Thus, under a stress test policy Γ = (N, k), for any equilibrium s∗, if under θ = θ∗, x ∈ (k, 1] is

the proportion of attack in the last group that is not persuaded, then G(x,N, k) is the lower bound

of the belief of the marginal agent in the last group that is not persuaded. Recall that (8) holds

with equality when n = 2. In this case, the marginal agent’s belief in the group 1 (the last non

persuaded group) is exactly G(.). If k > k∗(N), then given the definition of k∗(N) (See equation

(5)),

G(x,N, k) > p.
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Therefore, for any x ∈ (k, 1] the marginal agent in group n− 1 cannot be indifferent as required in

equilibrium (See (In)). Therefore, when k > k∗(N), there is no equilibrium s∗ such that n(s∗) ̸= 1.

In other words, under any policy Γ = (N, k) such that k > k∗(N), the unique equilibrium is s∗o(N, k)

and, therefore, Γ ∈ ΓP .

On the other hand, if k ≤ k∗(N), then there exists x ∈ (k, 1] such that G(x,N, k) = p. One

can construct a disobedient equilibrium where the first group is not persuaded but the subsequent

groups are persuaded. The equilibrium s∗1 and the resulting θ∗ are such that when θ = θ∗, the

proportion of attack from the first group F (
s∗1−θ∗

σ
) = x, and the residual strength is just enough to

pass the second stress test θ∗ − x
N

= k(1− 1
N
) (and then all the subsequent stress tests). Together

these imply the set of robustly persuasive tests ΓP = {(N, k)|N ∈ Z+, k > k∗(N)}.

Notice that the stress test policy (N, k∗(N)) is not robustly persuasive. However, (N, k) with

k > k∗(N) is robustly persuasive. This creates a technical problem because there is no minimum

k that makes (N, k) robustly persuasive. Following the literature (See, for instance, Goldstein and

Huang (2016)), we assume that the smallest feasible strength of stress test the regulator can choose

that is above k∗(N) is k∗(N)+ = k∗(N)+ ϵ for some small ϵ > 0. In other words, there is no feasible

k ∈ (k∗(N), k∗(N)+).

5.2 Trade off between strength and frequency

The optimal design of stress tests crucially depends on understanding the trade-off between strength

and frequency. A stress test strength k may fail to persuade the agents when there are N tests.

However, it may become robustly persuasive if there are more tests. In this section, we investigate

the properties of the required strength for robustly persuasive policy k∗(N).

Theorem 2 The function k∗(N) satisfies the following properties

1. There exists N0 ≥ 1 such that k∗(N) = 0 for all N ≥ N0.

2. k∗(N) is strictly decreasing in N for N ≤ N0 − 1.

3. k∗(N) is discretely convex in N ; that is, k∗(N) − k∗(N + 1) is strictly decreasing in N for

N ≤ N0 − 1.

Accordingly, the set of robustly persuasive stress test ΓP is convex.

The result follows from the fact that G(x,N, k) is increasing and quasi-concave in (N, k). The

formal proof is relegated to the appendix. Theorem 1 shows that for any given frequency of stress

tests N , there exists a threshold strength k∗(N) that makes the tests robustly persuasive; and

Theorem 2 demonstrates how the required strength for robustly persuasive policy k∗(N) changes
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with N . These results nest the findings of Goldstein and Huang (2016) and Basak and Zhou

(2020). Goldstein and Huang (2016) consider the case of static coordination, i.e., N = 1, and find

the lower bound for one-time robustly persuasive policy k∗(1). Basak and Zhou (2020) demonstrate

that, when the debt structure is sufficiently asynchronous (N ≥ N0), the continued viability of the

borrower is sufficient to persuade all agents to coordinate on rolling over the maturing debt; that

is, k∗(N) = 0 for all N ≥ N0 (the first part of Theorem 2). For those cases, there will be no run on

any fundamentally sound banks and, therefore, the efficient coordination is achieved.

Figure 1: k∗(N) - The strength required to make the n times repeated stress tests persuasive. The
density f = (2 + 4x) · 1(−0.5 ≤ x < 0) + (2− 4x) · 1(0 ≤ x ≤ 0.5) with (p, σ) = (0.7, 0.33).

This paper provides a complete picture of how the required strength of a robustly persuasive

stress test, k∗, depends on the its frequency, N . The second part of Theorem 2 demonstrates that

more frequent stress tests are beneficial because it enables more information transmission across

agents that facilitates coordination. More frequent tests means the strength for each test can be

reduced while its persuasiveness maintains. This result follows from the fact that under higher

N , when the future groups are persuaded, the excess strength needed to pass the next test is

lower, making the agents more optimistic about the survival of the regime. Finally, the third part

of Theorem 2 shows that the reduction in the required strength k∗(N) falls as we increase the

frequency of tests N . This means the marginal benefit of increasing the frequency of stress tests is

decreasing. Figure 1 presents a graphical illustration of k∗(N) for some specific parameters.

Next, we investigate how the model primitives affect the required strength k∗(N) for robust

persuasion. The two main model primitives are p — the agents reluctance to rollover, and σ — the
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scaling parameter for noisy private signals.

Proposition 2 Given any frequency N , the required strength for robustly persuasive stress tests,

k∗(N), is non-decreasing in p and non-increasing in σ.

(a) (b)

Figure 2: k∗(N) - The strength required to make the N times repeated stress tests persuasive

The formal proof is relegated to the appendix. The Figure 2 below illustrates this result.

Proposition 2 shows that it is easier to robustly persuade the agents if they are more willing to roll

over (lower p), and if they are more uncertain about the bank’s liquidity position (higher σ). To see

this, consider G(.), the lower bound on the belief of the marginal agent in the last non persuaded

group (See equation (G)). Recall that required strength k∗(N) for robust persuasion makes G(.)

higher than p. It is easier to achieve this if (1) p is lower and (2) σ is higher which makes G(.)

higher. This means the stress tests do not need to be as tough to be robustly persuasive, which

gives us the above result.

5.3 Optimal Stress Test

The regulator does not see the private signals the agents have received. She commits to a stress test

policy Γ. She anticipates that the agents will play the worst equilibrium, and due to reputational

concern, she only chooses a stress test which does not generate false-positive results. It is easy to

see that a stress test policy Γ does not generate false-positive results in the worst equilibrium iff Γ

is robustly persuasive (Γ ∈ ΓP ).11

11The argument is simple. If Γ is robustly persuasive, then in the worst equilibrium, once the bank passes the
first test, no agent attacks, and so the bank passes the next test, and the next one, and so on. Therefore, a robustly
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Therefore, the regulator’s problem is to choose a stress test policy Γ ∈ ΓP to maximize the

social welfare

Λ(Γ) = ((1− π) + π(1− Pf (Γ))B − πPf (Γ)χ− C(Γ).

Recall that under a robustly persuasive stress test Γ = (N, k), the probability of failure in the worst

equilibrium is Pf = k−θ

θ−θ
. Thus, for any N , the regulator prefers the weakest test provided the

tests are robustly persuasive (k∗(N)+). Abusing notation, we write Λ(N) = Λ(N, k∗(N)+). If the

regulator conducts more tests, then as shown in Theorem 2, she can lower the required strength

k∗(N) to be robustly persuasive. However, conducting more tests is costly. Since, k∗(N) is convex

(by Theorem 2) and C(N) is convex (by assumption), the regulator’s payoff Λ(N) is concave in N ,

which gives a unique optimal stress test.

Proposition 3 The regulator optimally chooses the stress test policy Γs = (N s, k∗(N s)+) and com-

mits to it, where

N s = min

{
N ∈ Z

+ : k∗(N)− k∗(N + 1) ≤ ∆C(N)(θ − θ)

π(B + χ)

}
.

If the shock arrives, in the worst equilibrium, the agents ignore their private signals and perfectly

coordinate their actions based on the stress test results, that is, s∗n = k − σ
2
for all n = 1, 2 . . . N s.

Thus, a bank with fundamental θ < k fails all the tests, and all the agents attack, and the bank

does not survive in the end; while a bank with fundamental θ ≥ k passes all the tests and no agent

attacks, and so, it survives in the end.

The marginal benefit of increasing N comes from the reduction in the ex-ante probability of

bank failure conditional on the arrival of liquidity shock; that is,

Pf (N, k∗(N))− Pf (N + 1, k∗(N + 1)) =
1

θ − θ
(k∗(N)− k∗(N + 1))

The expected marginal benefit from choosing more tests is this reduction in the probability of

failure times the charter value B, plus the externality χ, conditional on the arrival of liquidity

distress (probability π); that is, π(B+χ)

θ−θ
(k∗(N)− k∗(N + 1)). Since k∗(N)− k∗(N + 1) is decreasing

(Theorem 2), this expected marginal benefit is decreasing in N . The above result then follows form

equating the marginal benefit and marginal cost of increasing the frequency N .

persuasive stress test does not generate false-positives. On the other hand, if there is a false positive test, then it
must be that in the worst equilibrium, some agents attack even after the bank passes all the tests so far, which means
the stress test policy is not robustly persuasive.

22



6 Policy Implications

In this section, we relate our dynamic information disclosure policy to the current practice of stress

tests conducted for financial institutions facing maturity mismatch in their balance sheets. We

discuss: (1) how the frequency of stress tests can be used as an important policy lever, and (2) how

the socially optimal frequency depends on macroeconomic conditions, and bank-specific features.

6.1 Frequency: A Key Policy Lever

A crucial message of this paper is that it is not just the severity of the stress tests but the ability

to conduct such stress tests more often that helps the regulator in preventing runs. In practice we

observe heterogeneity in the execution of stress test policy with differences in frequency of stress

tests across financial institutions within a jurisdiction, and across geographies. Stress test policies

with discretionary frequency are also being employed in the context of financial institutions other

than bank holding companies, that engage in maturity transformation. For example, the European

Securities and Market Authority (ESMA) requires fund managers to conduct liquidity stress tests

for their funds with the minimum required annual frequency, however, the managers may exercise

discretion and conduct more or less frequent stress tests depending on the market conditions.12

In our theoretical analysis, we demonstrate that a commitment to conduct frequent stress tests

makes it easier to persuade agents to roll over their investment. that when the regulator commits

to conducting and disclosing results from stress tests at a greater frequency, it becomes easier to

persuade the agents to roll over their debt claims. The intuition is that conditional on future stress

tests being persuasive, it becomes easier to persuade the current group of agents when the stress tests

are conducted more frequently. The lawmakers in the US and the EU have both enacted laws that

commit them to conducting frequent stress tests of financial institutions, e.g. The Dodd-Frank Act

in the US and the Single Supervisory Mechanism (SSM) in the EU. However, such a commitment

did not exist in the early stress test exercises. Our theory provides an additional perspective on how

the commitment to conduct frequent stress tests possibly led to differential outcomes in early stress

test exercises conducted in these jurisdictions. The success of the the 2009 Supervisory Capital

Assessment Program (SCAP) stress test conducted in the US vis-a-vis the failure of the EU-wide

stress tests conducted in 2011 in restoring market confidence in the banking system is attributed

to governance aspects of the US tests including a credible and well-funded backstop facility, and

the failure of the EU stress test to adequately incorporate the sovereign risk scenarios (tests not

tough enough) Faria-e Castro, Martinez and Philippon (2017). However, another possible factor

contributing to the success of the SCAP is that the US had already committed by law to conduct

future regular stress tests, whereas Europe had not. That is, the market participants may have had

12See discussion on the frequency of stress tests: https://www.esma.europa.eu/sites/default/files/library/
esma34-39-897_guidelines_on_liquidity_stress_testing_in_ucits_and_aifs_en.pdf
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concerns about whether the European banks would survive despite the success of the current stress

test. 13

Why frequency matters: It is clear that the frequency of stress tests is an important dimension

of policy design, but how does it help the policy makers? Consider the following scenario: The

regulator is constrained to run stress tests at a pre-specified frequency N s. Suppose the stress tests

need to accommodate a more severe scenario that incorporates deterioration of market conditions.

This is captured in our model through a higher p (or low σ or both), i.e. it is more difficult to

convince the agents to rollover their debt. Conventional wisdom suggests that the regulator must

run stress tests with higher strength. This is in line with Proposition (2) where we show that for

a given N , under a higher p (low σ), the required strength of the stress test is higher. A more

severe stress test increases the ex-ante likelihood of bank failure under distress. However, as per

the Proposition (3), the optimal frequency and the corresponding strength of a robustly persuasive

stress test are jointly determined. In other words, the regulator may be able to mitigate the higher

likelihood of failure, if she could conduct more frequent tests. We illustrate the benefit of flexibility

in choosing the frequency and strength of stress tests when the market conditions worsen in Figure

(3). The regulator conducts stress tests at frequency N s under the current market conditions.

When the market conditions change from (p, σ) to (p′, σ′), a regulator running stress tests at the

same frequency N s, must conduct tougher tests. However, a regulator who optimally chooses the

frequency ends up choosing a much higher frequency N s′ and lower strength that increases the

likelihood of bank survival.

6.2 Determinants of Optimal Frequency

The regulators conducting stress tests must take into account the specific features of the financial

institution while designing the stress test policy. Should the regulator mandate bank-specific stress

test policies, taking into account bank-specific features such as, its systemic importance, or its

balance sheet composition? In this subsection, we attempt to provide an answer to these questions.

This will also give us some insight into what factors may be important for the choice of frequency

of stress tests. For example, in its guidelines for stress tests of funds, ESMA allows discretion on

13See the excerpt below from Abramovich (2011):

“One future test has been announced by the EBA for the first half of 2011. The United States, on the other hand,
has enacted comprehensive legislation requiring stress testing of banks by regulators as well as self- testing. Although
the United States legislation has not yet been implemented, the statute offers a regulatory framework for future stress
testing. The United States has a legislative mandate with definite regularity in its application.”
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Figure 3: Optimal frequency of robustly persuasive stress tests when market conditions change.

the frequency of stress tests policy depending on the fund-specific features.14

Bank Specific Factors: Susceptibility to Macroeconomic Shocks

Observation 1 N s is increasing in π.

Off-balance sheet exposures and a significant proportion of short-term wholesale funding may

make a financial institution more susceptible to exogenous shocks due to worsening macroeconomic

conditions. We capture this vulnerability of the financial institution through the parameter π. From

Proposition (3) we can infer that N s is increasing in π. For financial institutions more susceptible to

adverse shocks, the frequency of stress tests should be higher as the expected marginal benefit from

more tests is higher. In the guidelines for conducting stress tests for Alternative Investment Funds

(AIFs), the European Security Market Authority (ESMA) acknowledges that the respondents (asset

management firms) called for a higher frequency of stress tests when there is an emerging/imminent

14See bullet number 26 in the guidelines for stress testing document https://www.esma.europa.eu/document/
guidelines-liquidity-stress-testing-in-ucits-and-aifs

When deciding on the appropriate frequency, managers should take into account the following: (a) the liquidity of
the fund determined by the manager and any change in the liquidity of assets; (b) the frequency should be adapted
to the fund rather than a ‘one-size-fits-all’ approach being taken to all funds operated by the manager; and (c) the
nature of the vehicle (closed versus open ended), the redemption policy and LMTs, such as gates or side pockets, may
be additional factors to take into consideration when determining the appropriate frequency of LST.
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risk to fund liquidity.15 This maps to our discussion, that when the probability of liquidity distress

is higher, the frequency must be higher. In this case, the higher frequency allows for a less stringent

test and hence, a higher ex-ante likelihood of survival.

Bank Specific Factors: Systemic Importance

Observation 2 N s is increasing in χ.

In an interconnected financial system, some institutions by virtue of their credit relationships

or their role as conduits for financial capital may impose a higher social cost on the system

upon failure. In the model, we capture this characteristic of financial institutions through the

externality parameter χ in the social welfare function. It directly follows from Proposition 3 that

socially optimal N s should be higher for systemically more important banks (higher χ). This is so

because the expected marginal benefit from running more frequent tests is higher for systemically

important financial institutions or whose failure imposes a higher social cost. In practice, bank

holding companies that are systemically more important are categorized differently, monitored,

and tested more frequently (See Figure (5) in the Appendix).

7 Asynchronous Debt Structure

The crucial feature of our setup is that the agents move sequentially, which enables the regulator to

run more tests. If the agents were moving simultaneously, then more than one test will not disclose

any new information, making the notion of frequent tests irrelevant. A natural application of our

setup is a a maturity mismatch problem where a bank or financial institution has asynchronous

debt structure. However, unlike in our benchmark setup, in practice, the creditors do not move

continuously. Instead, some fraction of debts mature at a time.

Below, we extend our benchmark setup and add a first stage where the bank chooses the asyn-

chronicity of debt maturity structure M : a fraction 1/M of debts mature at dates 0, 1
M
, 2
M
, . . . , M−1

M
.

The game is as follows. The bank chooses M . The regulator sees M , and chooses a robustly per-

suasive stress test Γ(M). A creditor whose debt matures date date m, sees all the tests results

until then (inclusive). She also receives her private signal. When her debt matures, based on the

private signal and the test results, she decide whether to withdraw (attack) or rollover. We do not

model the bank’s choice of debt duration. The duration of different debt contracts can be identical

or different. What is critical here is that all outstanding debts only mature once during the period

15Please refer to the ESMA guidelines on stress testing: https://www.esma.europa.eu/sites/default/files/
library/esma34-39-897_guidelines_on_liquidity_stress_testing_in_ucits_and_aifs_en.pdf
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of liquidity distress (t ∈ [0, 1]), and the newly issued debt (which is held by rollover creditors) will

all have maturity dates after the end of liquidity distress (t = 1).16

As before, we assume that the creditors play the worst equilibrium. Abusing notation, we use

Pf (M,Γ) to capture the probability of failure in the worst equilibrium given the debt structure M

and stress test policy Γ. Accordingly, the regulator’s payoff is

Λ(M,Γ) = B − π(B + χ) · Pf (M,Γ)− C(N).

We assume that the bank bears the cost of tests. Similar to the regulator the bank also anticipates

that the agents will play the worst equilibrium. However, unlike the regulator, the bank ignores the

externality it creates on the system when it fails. The bank’s payoff is

Λb(M,Γ) = B − πB · Pf (M,Γ)− C(N)

We further assume that if the bank is indifferent, it chooses a lower M .17

7.1 Dynamic Liability Structure: A Constraint

If the bank’s debt structure is such that no debts mature between two tests, increasing the frequency

of tests will not reduce the likelihood of bank failure. Thus, while designing the optimal stress test,

the regulator needs to consider the constraint imposed by the asynchronous debt liability structure

M . When N = M , the analysis is exactly the same as before. That is, if the regulator chooses the

stress test policy (N, k∗(N)+) and the bank chooses M = N , then, as before, the only equilibrium

in the obedient equilibrium. We use the notation Pf (N), Λb(N) and Λ(N) when the argument of

these expressions are M = N and Γ = (N, k∗(N)+)). It is hard to analytically solve for Pf (M,Γ)

when M ̸= N . However, it is easy to see that a regulator will never choose N > M (since higher N

costs more and the (N −M) tests are worthless). We show in Lemma (A.2), that for N ≤ M ,

Pf (M,Γ) ≥ Pf (N).

It follows from this inequality that in equilibrium if the bank chooses M ≤ N s, the regulator will

choose Γ(M) = (M,k∗(M)+). While, we do not analytically solve for Γ(M) when M > N s, we

show that on path, the bank will never choose M > N s. Therefore, the bank optimally chooses

16In this regard, our model does not consider the demandable deposits. Under deposit insurance coverage, depositor
run is unlikely to be the primary reason for bank failure. Moreover, the setup can be generalized to any financial
institution engaging in maturity transformation, such as dealer banks and alternative investment funds.

17This can be rationalized by some additional cost of issuing more asynchronous debts. Formally, consider lexico-
graphic preference where such costs are of second order importance to the bank.
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M ∈ [1, N s] to maximize Λb(M, (M,k∗(M)+)). Define

N e = min

{
N ∈ Z+ : k∗(N)− k∗(N + 1) ≤ ∆C(N)(θ − θ)

πB

}
. (9)

Proposition 4 On the equilibrium path, the bank chooses the debt structure M = N e ∈ [1, N s], the

regulator chooses the stress test policy Γ(N e) = (N e, k∗(N e)+), and accordingly, if the shock arrives,

the worst equilibrium is the obedient equilibrium.

The choice of stress test is sub-optimal for social welfare. This sub-optimally arises because the

bank does not internalize the externality it imposes on the financial system, and accordingly, it

chooses a lower asynchronous debt structure than the social optimal level, which imposes an upper

bound on the number of effective stress tests the regulator can run.

Figure 4: Socially optimal (N s, k∗(N s)) subject to the persuasive constraint

7.2 Stress Tests and Liquidity Regulation

If we ignore the cost of running more tests, then the first best outcome is when the agents do not

attack a bank whenever θ ≥ 0. A stress test policy will achieve the first best if the regulator can
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run at least N0 tests (since k∗(N0) = 0). However, when the marginal cost of running so many

tests is significant, the regulator may choose N s < N0, or even if the regulator may want N s = N0,

the bank may choose M < N0, and thus, forcing the regulator to run only M tests. This could

be the case when the externality χ is high. The regulator may resort to other less costly liquidity

regulations which may complement the stress test policy and improve social welfare. In this section

we provide such as example, called Liquidity Coverage Ratio (LCR).

Suppose that the bank has debt d of which ds is debt that matures in the next 30-days. As

before, we normalize the possible outflow during a stress event to 1. We assume ds < 1 < d. On the

assets side, the bank has the choice to invest in a highly liquid asset (low-yield), a pledgeable asset

(medium-yield) and a long-term illiquid asset (high-yield). Suppose the bank has (1+η) with η > 0

amount of assets to be invested in the pledgeable and highly liquid assets. According to LCR policy,

the bank is forced to keep λds in highly liquid assets. Accordingly, the bank’s pledgeable asset is

(1 + η − λds). The investment in liquid assets is associated with a risky component µ̃ ∼ U [µ, 0]
that captures the severity of the shock, and it directly reduces the liquidity of the bank. Moreover,

a more severe shock reduces the pledgeablity
(
1− µ̃

µ

)
of the pledgeable assets. Notice that if the

shock is most severe (µ) pledgeablity becomes zero. Therefore, the liquidity position of the bank is,

θ = λ · ds︸ ︷︷ ︸
Liquid asset

+ µ̃︸︷︷︸
direct shock

+

(
1− µ̃

µ

)
︸ ︷︷ ︸
pledgeablity

· (1 + η − λ · ds)︸ ︷︷ ︸
pledgeable asset

.

This implies θ ∼ U [θ, θ], where θ = λ · ds + µ, θ = (1+ η). Notice that a higher λ increases θ. This

means if the regulator increases the LCR, the prior belief about the bank’s fundamental improves.

Below, we show how this affects welfare.18

Proposition 5 The social welfare Λ(N s, (N s, k∗(N s)) (without debt structure constraint) and

Λ(N e, (N e, k∗(N e)) (with debt structure constraint) increases with LCR (λ).

The formal proof is relegated to the appendix. Below, we provide the main argument. A higher λ

increases θ, which reduces the probability of failure of the bank (See (4)), and thus, directly improves

welfare. Moreover, this increases the marginal benefit of increasing the frequency of tests (if there

is no debt structure constraint), and thus, indirectly increases the equilibrium choice N s. A higher

N s further reduces the probability of failure (by lowering k∗(N)), but it also increases the cost.

It follows from envelope condition that this indirect effect on welfare is non-negative. Therefore,

the direct and indirect effect together improves welfare. When the bank imposes an upper bound

on number of tests by choosing M = N e, this envelope condition does not apply. However, since

M = N e is chosen such that it maximizes Λb(M, (M,k∗(M)) (See Proposition 4), the increase

18Mandating very high values for regulatory ratios λ could be costly as well. However, in this stylized example,
we ignore such costs and only focus on how LCR can complement stress tests.
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in cost is lower than the social benefit from a higher N e (because Λb ignores the externality χ).

Therefore, this results in a net increase in social welfare. This means a higher LCR encourages

the bank to choose a higher asynchronous debt structure, and thus, relaxes the constraint on the

regulator, and indirectly improves welfare. Notice that both the direct and indirect effects improves

welfare. This shows that regulatory policies such as LCR promote financial stability by changing

the prior of belief about the fundamental through an increase of θ.

8 Conclusion

Policy discussions on financial regulation often argue for more frequent stress tests, especially for

systemically important banks, and during times of higher likelihood of adverse shocks. The theoret-

ical literature has established how a sufficiently strong stress test robustly dissuades the agents from

running on a bank. However, the frequency of testing as a policy lever has not been explored the-

oretically. This paper establishes how higher frequency helps, characterizes the optimal frequency,

and discusses what determines the optimal frequency.

During a bank run, the agents may not move simultaneously (for instance, when the debts

mature at different dates). This asynchronous move enables the regulator to conduct multiple tests

and disclose new information based on past actions. We show that when the regulator conducts

more tests (higher N), she can weaken the strengths while keeping the tests robustly persuasive

(lower k∗(N)). The bank is less likely to pass when the test is stronger. Therefore, by reducing the

required strength of each test, more frequent tests increase the probability that a bank can survive

the tests. However, it could be costly to run more tests. We also show that k∗(N) is convex, thereby

ensuring a unique optimal frequency.

We discuss some policy implications of this theory. For instance, one may think that the regulator

should increase the strength of stress tests under worse market conditions. However, we show that it

is possible that under worse market conditions, the optimal stress test policy involves more frequent

but more lenient tests. We also show an example of how other regulatory policies may complement

the stress test policy.
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Appendix: Omitted Proofs

Proof of Lemma 1.

Under monotone strategies, ρi(si, ζ
n) decreases if (1) si increases, or (2) ζn′ = 1 rather than

ζn′ = 0 for n′ ≤ n. Consider θ
′′
> θ

′
. If the agents play monotone strategies, then for any given

ζn, there is less attack under θ
′′
than under θ

′
. Therefore, the bank is more likely to pass the next

test. If the bank passes (or fails) the next test under both θ
′′
and θ

′
, then there will be less attack

under θ
′′
than under θ

′
from the agents who move after the next test and before the next to next

test (follows from the first property of monotone strategy). On the other hand, if the bank passes

the next test under θ
′′
but fails under θ

′
, then also there will be less attack under θ

′′
(follows from

the second property of monotone strategy). Continuing this argument, we can see that if the bank

survives under θ
′
, then it will also survive under θ

′′
> θ

′
. Thus, in a PBE where the agents play

monotone strategies, there exists a threshold θ∗ such that the bank survives iff θ ≥ θ∗.

Given log-concave signals, this means an agent with higher signal believes that the regime is

more likely to survive. Therefore, given any ζn, if an agent with signal s
′
i prefers not attacking, so

will an agent with signal s
′′
i > s

′
i. This implies that, in equilibrium, the agents will play symmetric

cutoff strategies s∗n(ζ
n) for any ζn. Let s̃∗ = {s∗n(ζn)}Nn=1 be the equilibrium cutoffs, and Ẽ(Γ) be

the set of equilibrium s̃∗ given a stress test policy Γ.

Notice that for any s̃∗, there exists θ∗ such that the bank survive in the end iff θ ≥ θ∗. ŝ ∈ Ẽ(Γ) is
the worst equilibrium under stress test policy Γ iff θ∗(ŝ,Γ) ≥ θ∗(s̃∗,Γ) for all s̃∗ ∈ Ẽ(Γ). To see why

ŝ must have the two properties, consider any equilibrium s̃∗ = {s∗n(ζn)}. Consider an alternative

cutoff strategy that satisfies the first property. This means under this alternative strategy, the

agents behave optimally once the bank fails a test. Moreover, for ζn such that ζn′ = 1 for all n′ ≤ n,

the marginal agent s∗n(ζ
n) is less optimistic about the survival of the regime (since there will be

more attacks if the bank fails any subsequent test). Therefore, we can construct a cutoff strategy

with higher thresholds, which results in a higher θ∗.

Since, in the worst monotone PBE, agents always attack whenever a bank fails a test (property

1), we simplify the notation in the main text and describe the equilibrium by N thresholds s∗ =

{s∗n}Nn=1 where s
∗
n is the threshold for groups that move after the n-th test and before the (n+1)-th

test, given that the bank has passed all first n stress tests.

Proof of Proposition 1.

For a given stress test policy Γ = (n, k), we characterize the equilibrium s∗ = {s∗n}nn=1 using four

simple steps.

Step 1 (Passing the tests and survival): Given s∗, there exists a weakly increasing sequence

k = θ0 ≤ θ1 ≤ . . . ≤ θn−1 ≤ θN = θ∗.
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The bank passes the first n tests iff θ ≥ θn−1, and survives in the end iff θ ≥ θ∗. To see how this

thresholds are determined, notice that for any θ, the size of attack from group n′ is 1
N
F
(

s∗
n′−θ

σ

)
.

The bank will pass the n-th test (ζn = 1) iff

θ − 1

N

n−1∑
n′=1

F

(
s∗n′ − θ

σ

)
≥ k

(
1− n− 1

N

)
.

Since the LHS is increasing in θ, there exists θ̃n−1 such the above holds true iff θ ≥ θ̃n−1. Therefore,

the bank passes all the first n stress tests iff

θ ≥ θn−1 := max{θ̃0, θ̃1, . . . θ̃n−1}.

Finally, we define θ̃N such that when θ = θ̃N , the aggregate attack from all the groups is same as θ

θ̃N − 1

N

N∑
n′=1

F

(
s∗n′ − θ̃N

σ

)
= 0.

Thus, the regime passes all the n tests and survive in the end iff θ ≥ θ∗ where

θ∗ = θN = max{θ̃0, θ̃1, . . . , θ̃N}.

Step 2 (Indifference): After the bank passes the first n stress tests, group n learns that

θ ≥ θn−1. In equilibrium, a agent i in group n wants to attack iff si < s∗n. Notice that he believes

that the bank will survive with probability

P (θ ≥ θ∗|si, θ ≥ θn−1) =
F
(
si−θ∗

σ

)
F
(

si−θn−1

σ

) .
It follows from log-concavity that this belief is increasing in si. The lowest signal a agent i in group

n may receive is si = θn−1 − σ/2. If s∗n > θn−1 − σ/2 then the marginal agent must believe that the

probability of survival

F
(

s∗n−θ∗

σ

)
F
(

s∗n−θn−1

σ

) = p.

This makes the marginal agent indifferent between attacking and not attacking. While all the agents

with si > s∗n prefer not attacking and all the agents with si < s∗n prefer attacking. If s∗n = θn−1−σ/2,

then no agent in group n attacks. We say that group n is persuaded. In this case, the marginal

agent may believe the probability of survival is weakly higher than p.

Step 3 (First persuaded group): Suppose that group n is persuaded s∗n = θn−1 − σ/2.

Then, s∗n believes θ cannot be higher than θn−1. Therefore, if θ∗ > θn−1, then s∗m will always

attack. Thus, group n is persuaded iff θ∗ = θn−1. Since θn is weakly increasing, this means
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θn−1 = θn = . . . = θN−1 = θN = θ∗. Accordingly, s∗n′ = θ − σ/2 for all n′ ≥ n. Thus, if in

equilibrium group n is persuaded then it must be that all the subsequent groups are persuaded.

Thus, for any s∗, there is n ∈ {1, 2 . . . N + 1} that captures the first group that is persuaded. If no

group is persuaded, we use the convention that n = N + 1.

Step 4 (Non-persuaded groups): Consider n < n. Notice the indifference condition of

the marginal agent from a non-persuaded group. Since θn−1 is weakly increasing, it follows from

log-concavity that s∗n is weakly decreasing in n. That is, fewer agents attack from later groups.

This implies θ̃n is strictly increasing in n. To see this, notice that θ̃n ≤ θ̃n−1 iff

F

(
s∗n − θ̃n−1

σ

)
≤ k.

If this holds true, then all subsequent groups will have even less attack. Therefore, if the bank

passes the nth test it will pass the subsequent tests and survive in the end, which implies θn−1 = θ∗

contradicting the fact that group n is not persuaded. Therefore, for all non-persuaded groups n < n,

we have θn−1 = θ̃n−1.

Proof of Theorem 2.

Define

y(N, k) ≡ min
x∈[k,1]

G(x,N, k). (A.1)

Since G(x,N, k) is increasing in N , then, by definition, y(N, k) is increasing in N . To see this,

consider N ′ > N , and define,

x(N, k) ≡ arg min
x∈[k,1]

G(x,N, k). (A.2)

Then, we have

y(N, k) = G(x(N, k), N, k) ≤ G(x(N ′, k), N, k) < G(x(N ′, k), N ′, k) = y(N ′, k)

The first inequality follows from the definition of x(N, k) and the second from the monotonicity of

G with respect to N . A similar argument can be used to show that y(N, k) is increasing in k.

Consider y(N, k = 0) and note that limN→∞ y(N, 0) = 1 > p. Since y(N, 0) is increasing in N ,

there exists a unique N0 ≥ 1 such that y(n, k = 0) > p if and only if n ≥ N0.
19 Alternatively,

N0 = min{N ∈ Z+|y(N, k = 0) ≥ p}
19For the details of the existence of N0, see Basak and Zhou (2020). For example, if σ is sufficiently large, then

N0 = 1.
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Therefore, for any N ≤ N0−1, k∗(N) > 0. Let N ′ be any number in the range of (N,N0]. We have

y(N, k∗(N)) = p = y(N ′, k∗(N ′)) < y(N ′, k∗(N)).

Since y(N, k) is increasing in k, it must be that k∗(N ′) < k∗(N). Therefore, for N ∈ [1, N0 − 1],

k∗(n) is strictly decreasing in N ; and, for all N ≥ N0, k
∗(N) = 0. This completes the first two

parts of the Theorem. Next, we prove the discrete convexity of k∗(N) for N ∈ [1, N0 − 1].

Lemma A.1 y(N, k) is quasiconcave in (N, k).

Proof of Lemma A.1. We first prove that G(x,N, k) is quasiconcave in (N, k). Consider

(N, k), (N ′, k′), and any λ ∈ [0, 1] and fix x. Define

k′′ = λk + (1− λ)k′ and N ′′ = λN + (1− λ)N ′.

Without loss of generality, letG(x,N, k) ≥ G(x,N ′, k′). Note that, G(x,N, k) ≥ G(x,N ′, k′) implies
x−k
Nσ

≤ x−k′

N ′σ
, which, in turn, implies

x(N ′ −N) ≤ kN ′ − k′N.

Then, we have

x− k′′

N ′′σ
− x− k′

N ′σ
=

1

N ′′N ′σ
(x(N ′ −N ′′)− (k′′N ′ − k′N ′′))

=
λ

N ′′N ′σ
(x(N ′ −N)− (kN ′ − k′N)) ≤ 0

Therefore, G(x,N, k) is quasiconcave in (N, k) since

G(x,N ′′, k′′) ≥ G(x,N ′, k′) = min{G(x,N, k), G(x,N ′, k′)}.

Next, we prove the quasiconcavity of y(N, k) based on the fact the G(x,N, k) is quasiconcave

in (N, k). Note that, since G(x,N, k) ≤ 1 for any x,N and k,

y(N, k) = min
x∈[k,1]

G(x,N, k) = min
x∈[0,1]

{G(x,N, k) + Ik(x)}

where Ik(x) = 1(x < k). Therefore, it is sufficient to show G(x,N, k) + Ik(x) is quasiconcave in

(N, k) because the infimum of a quasiconcave function is quasiconcave.20 Without loss of generality

let us consider, k > k′. Given that, only two cases are possible.

Case 1. Either x < k′ < k or k′ < k ≤ x. In either case,

Ik′′(x) = Ik(x) = Ik′(x) = constant

20see Boyd, Boyd and Vandenberghe (2004).
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Therefore, from the quasiconcavity of G(x,N, k), we have,

G(x,N ′′, k′′) + Ik′′(x) ≥min{G(x,N, k) + Ik′′(x), G(x,N ′, k′) + Ik′′(x)}

=min{G(x,N, k) + Ik(x), G(x,N ′, k′) + Ik′(x)}

Case 2. k′ ≤ x < k. Now we have, Ik′(x) = 0 and Ik(x) = 1. Given that G(x,N ′, k′) ∈ [0, 1]

for all x ∈ [k′, 1],

min{G(x,N, k) + Ik(x), G(x,N ′, k′) + Ik′(x)} = G(x,N ′, k′).

Clearly, if λ ∈ [0, 1] is such that k′′ > x ≥ k′, then Ik′′(x) = 1 and

G(x,N ′′, k′′) + Ik′′(x) ≥ G(x,N ′, k′) = min{G(x,N, k) + Ik(x), G(x,N ′, k′) + Ik′(x)}

However, if x ≥ k′′ ≥ k′, then,

x− k′′

σN ′′ − x− k′

σN ′ =
1

NN ′′σ
· (x(N ′ −N ′′)− (k′′N ′ − k′N ′′)) .

Substituting (k′′ = λk + (1− λ)k′ and N ′′ = λN + (1− λ)N ′, we have

x− k′′

σN ′′ − x− k′

σN ′ =
λ

NN ′′σ
· (x(N ′ −N)− (kN ′ − k′N)) .

If N ′ −N > 0, using x < k, we have

x− k′′

σN ′′ − x− k′

σN ′ <
λ

NN ′′σ
(k(N ′ −N)− (kN ′ − k′N)) =

λ

N ′′σ
· (k′ − k) < 0.

Otherwise, if N ′ −N ≤ 0, using x ≥ k′, we have

x− k′′

σN ′′ − x− k′

σN ′ ≤ λ

NN ′′σ
· (k′(N ′ −N)− (kN ′ − k′N)) =

λN ′

N ′′Nσ
· (k′ − k) < 0.

Therefore, G(x,N ′′, k′′) > G(x,N ′, k′) , which implies

G(x,N ′′, k′′) + Ik′′(x) ≥ G(x,N ′, k′) = min{G(x,N, k) + Ik(x), G(x,N ′, k′) + Ik′(x)},

completing the proof that y(N, k) = minx∈[0,1]{G(x,N, k) + Ik(x)} is quasiconcave in (N, k).

By definition, ΓP = {(N, k) : y(N, k) ≥ p}. Consider (N, k∗(N)), (N ′, k∗(N ′) ∈ ΓP . By Lemma

A.1, y(N, k) is quasiconcave, which implies that, for λ ∈ [0, 1],

y(λN + (1− λ)N ′, λk∗(N) + (1− λ)k∗(N ′)) ≥ p. (A.3)

That means, (λN + (1− λ)N ′, λk∗(N) + (1− λ)k∗(N ′)) ∈ ΓP , proving that the set ΓP is convex.

By the definition of k∗(N) (see (5)), k∗(N) = inf{k : y(N, k) ≥ p}. Given that, (A.3) implies

k∗(λN + (1− λ)N ′) ≤ λk∗(N) + (1− λ)k∗(N ′),
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thereby proving the convexity of k∗(N). As k∗ is defined on Z+, it is discrete convex as we have

shown that the extension of k∗ that defines on R+ is convex (see Boyd, Boyd and Vandenberghe

(2004)). By the definition of discrete convexity, k∗(N)− k∗(N + 1) is decreasing in N .

Proof of Proposition 2. Define the function G̃ as follows,21

G̃(x, σ, n, k) = G(x, σ, n, k) + Ik(x)

where Ik(x) = 1(0 ≤ x < k) is an indicator function that is equal to 1 for all x ∈ [0, k) and 0

otherwise.

Define the minimizer of G̃,

x(σ,N, k) = arg min
x∈[0,1]

{G̃(x, σ,N, k)} = arg min
x∈[k,1]

{G(x, σ,N, k)}

Consider σ1 > σ0. Note that N0(σ1) < N0(σ0) since G(x, σ,N, k) is increasing in σ and N .

Hence, there are several cases to consider, (1) N < N0(σ1) (2) N ∈ [N0(σ1), N0(σ1)] and (3)

N ≥ N0(σ0). Case (2) and (3) are trivial because we have

k∗(N, σ0) ≥ k∗(N, σ1) = 0

.

We now focus on Case(1).

Case 1: N < N0(σ1)

From the definition of x(σ,N, k) ∈ [k, 1],

G̃(x(σ0, N, k∗(N, σ0)), σ0, N, k∗(N, σ0)) = G̃(x(σ1, N, k∗(N, σ1)), σ1, N, k∗(N, σ1)) = p

Note that,

G̃(x(σ1, N, k∗(N, σ1)), σ1, N, k∗(N, σ1)) = p > G̃(x(σ1, N, k∗(N, σ1)), σ0, N, k∗(N, σ1)) (A.4)

The strict inequality follows from G̃(x, σ,N, k) is increasing in σ for all x ∈ [k, 1]

Again, using the definition of x(σ,N, k)

G̃(x(σ1, N, k∗(N, σ1)), σ0, N, k∗(N, σ0)) ≥ G̃(x(σ0, N, k∗(N, σ0)), σ0, N, k∗(N, σ0)) = p (A.5)

21Since, limx→k G(x, σ,N, k) = 1, G̃ is continuous in x for x ∈ [0, 1].
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Combining Conditions (A.4) and (A.5)

G̃(x(σ1, N, k∗(N, σ1)), σ0, N, k∗(N, σ0)) > G̃(x(σ1, N, k∗(N, σ1)), σ0, N, k∗(N, σ1))

But G̃(x, σ0, N, k) is weakly increasing in k for all x ∈ [0, 1]. Therefore, it must be that for

σ1 > σ0, the above implies

k∗(N, σ0) > k∗(N, σ1)

Following an exactly similar argument we can prove that for p1 > p0 and N ∈ [1, N0(p0)− 1],

k∗(N, p1) > k∗(N, p0)

for N ≥ [N0(p0), N0(p1)− 1], the above is trivially true as

k∗(N, p1) > k∗(N, p0) = 0

and for N ≥ N0(p1),

k∗(N, p1) = k∗(N, p0) = 0

Proof of Proposition 3.

Notice that Λ(N, k) is decreasing and separable in N and k and it is quasi-concave. Therefore,

given the convex persuasive constraint, there always exists a social optimal. Given any N , the

regulator can always improve Λ by reducing k. However, if k ≤ k∗(N), then the stress tests are

no longer persuasive. Therefore, for any N , the social optimal stress test must have k = k∗(N)+.

Notice that

Pf (N, k∗(N)+) = Pr(θ < k∗(N)+) =
k∗(N)− θ

θ − θ
.

Substituting this in the regulator’s objective function, we get

Λ(N, k∗(N)+) = B − π(B + χ)k∗(N)

θ − θ
− C(N),

which is concave in N since both k∗(N) (See Theorem 1) and C(N) are convex. Therefore, the

maximizer N s must be such that,

Λ(N s, k∗(N s)) ≥ max{Λ(N s + 1, k∗(N s + 1)),Λ(N s − 1, k∗(N s − 1))}

Defining the marginal cost as ∆C(N) = C(N + 1)− C(N), this implies,

(k∗(N s)− k∗(N s + 1))π(B + χ)

θ − θ
≤ ∆C(N s) ≤ (k∗(N s − 1)− k∗(N s))π(B + χ)

θ − θ

Define H : Z+ → R

N 7→ k∗(N)− k∗(N + 1)
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The conditions simplify to,

H(N s) ≤ ∆C(N s)(θ − θ)

π(B + χ)
≤ H(N s − 1)

Since H(N) is weakly decreasing,22 this can also be written as,

N s = min

{
N ∈ N : H(N) ≤ ∆C(N)(θ − θ)

π(B + χ)

}
(N s)

Proof of Proposition 4. A regulator will never choose N > M (since higher N costs more

and the (N −M) tests are worthless). Consider N ≤ M .

Lemma A.2 For any robustly persuasive Γ = (N, k), and debt structure M ≥ N , Pf (M,Γ) ≥
Pf (N).

Proof.

If M ≥ N0 the claim is trivially true since k∗(M) = 0 and k cannot be lower than 0. Consider

M < N0. For N = M , again the claim holds true with equality by definition. Suppose that the

regulator chooses N < M . Note that if N < M , then at least two groups (n ≥ 2) move between

the first test and the second test. Suppose that if the bank passes the second test, all the creditors

moving later will be persuaded, that is, θ∗ = θ1. Then, it follows from (ζn) and (S) that

θ∗ − n

M
F

(
s∗1 − θ∗

σ

)
= k

(
1− n

M

)
. (ζn)

This implies

θ∗ − k =
n

M

(
F

(
s∗1 − θ∗

σ

)
− k

)
.

Substituting this in (In) we can say that the marginal agent after the first test believes the bank

will survive in the end with probability

F
(

s∗1−θ∗

σ

)
F
(

s∗1−θ∗

σ
+ θ∗−k

σ

) =
x

F
(
F−1(x) + n(x−k)

Mσ

) = G(x,M/n, k) <
x

F (F−1(x) + x−k
Mσ

)
.

The inequality follows from n ≥ 2. Therefore, for k ≤ k∗(M) there exists x∗ such that

G(x∗,M, k) = p > G(x∗,M/n, k)

22To see this, consider H(N + 1)−H(N) = 2
(

k∗(N+1)+k∗(N−1)
2 − k∗(N)

)
≥ 0. Since k∗(N) is convex,

αk∗(N + 1) + (1− α)k∗(N − 1) ≥ k∗(α(N + 1) + (1− α)(N − 1))

for all α ∈ [0, 1] and particularly for α = 0.5.
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We can find x∗′ ∈ (x∗, 1) (and s∗1, θ
∗) such that

F
(

s∗1−θ∗

σ

)
F
(

s∗1−k

σ

) = G(x∗′ ,M/n, k) = p

Hence, even if all the groups moving after the second test are obedient, there exists at least one

equilibrium in which the group moving before the second test will adopt a strategy s∗1. If N < M <

N0, then k∗(M)+ is not robustly persuasive. Consequently, Pf (M,Γ) ≥ Pf (N).

Next, we find the optimal stress test given any choice of asynchronous debt structure M .

Case 1 (M ≤ N s) : For a debt structure M and a robustly persuasive policy Γ = (N, k) with

N < M ≤ N s,

Λ(M, (N, k)) ≤ Λ(N) < Λ(M).

The first inequality follows from the above Lemma and the second inequality follows from the

fact that Λ(N) is increasing in N for N ≤ N s (since Λ(N) is concave and maximized at N s).

This shows that for any debt structure M ≤ N s the bank chooses, the regulator will choose

Γ(M) = (M,k∗(M)+).

Case 2 (M > N s) : The regulator may optimally choose Γ(M) with N(M) < M . Neverthe-

less, for any robustly persuasive Γ = (N, k), it follows from the above lemma that Λb(M,Γ(M)) ≤
Λb(N(M)).

– If N(M) ≤ N s, then Λb(M,Γ(M)) ≤ Λb(N(M)), that is, the bank can simply chooses M =

N(M) and get at least as high payoff. Moreover, since the bank prefers a lower M for breaking

ties, the bank will choose N(M) over such M .

– On the other hand, if N(M) > N s, then Λb(M,Γ(M)) ≤ Λb(N(M)) < Λb(N
s) (Since Λb(N)

is decreasing in N for N ≥ N s). Therefore, the bank will choose N s over such M .

This shows that in equilibrium, if the bank chooses M ≤ N s, the regulator will choose Γ(M) =

(M,k∗(M)+). While, we do not analytically solve for Γ(M) when M > N s, we show that on

path, the bank will never choose M > N s. Therefore, the bank optimally chooses M ∈ [1, N s] to

maximize Λb(M, (M,k∗(M)+)).

Proof of Proposition 5.

Suppose that the regulator is free to choose N (no constraint by asynchronous debt structure).
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The optimal social welfare in this case is

Λ(N s, k∗(N s)) = B − π(B + χ)
k∗(N s)− θ

(θ − θ)
− C(N s)

First, note that θ = λds. For a given ds, it is sufficient to show that Λ(.) is increasing in θ. Consider

θ1 > θ and the corresponding N s
1 = N s(θ1) ≥ N s(θ) = N s.

∆Λ = Λ(N s
1 , k

∗(N s
1 )− Λ(N s, k∗(N s))

= π(B + χ) ·
(
k∗(N s)− θ

θ − θ
− k∗(N s

1 )− θ1

θ − θ1

)
− (C(N s

1 )− C(N s))

Add and subtract π(B + χ)k
∗(Ns)−θ1

θ−θ1
,

∆Λ = π(B + χ) ·
(
k∗(N s)− θ

θ − θ
− k∗(N s)− θ1

θ − θ1

)
︸ ︷︷ ︸

direct effect>0

+

(
π(B + χ) ·

(
k∗(N s)− k∗(N s

1 )

θ − θ1

)
− (C(N s

1 )− C(N s))

)
︸ ︷︷ ︸

indirect effect

We show that the indirect effect is non-negative by envelope condition. To see this, notice from the

definition of N s in Proposition (3), N s is such that,

π(B + χ)
(k∗(N s)− k∗(N s + 1))

(θ − θ)
≤ C(N s + 1)− C(N s).

Since k∗(N) and C(N) are convex, for any N ≤ N ′

(πB + χ)
(k∗(N)− k∗(N ′))

(θ − θ)
≥ C(N ′)− C(N)

Therefore, since N s
1 ≥ N s, the indirect effect(

π(B + χ) ·
(
k∗(N s)− k∗(N s

1 )

θ − θ1

)
− (C(N s

1 )− C(N s))

)
≥ 0

Therefore, ∆Λ > 0.

Next, consider the case where the bank chooses M = N e and forces the regulator to choose

N = M (as in proposition 4). Let N e
1 = N e(θ1) ≥ N e(θ) = N e. As before, we can write

∆Λ = π(B + χ) ·
(
k∗(N e)− θ

θ − θ
− k∗(N e)− θ1

θ − θ1

)
︸ ︷︷ ︸

direct effect>0

+

(
π(B + χ) ·

(
k∗(N e)− k∗(N e

1 )

θ − θ1

)
− (C(N e

1 )− C(N e))

)
︸ ︷︷ ︸

indirect effect
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We can further breakdown the indirect effect as

πB ·
(
k∗(N e)− k∗(N e

1 )

θ − θ1

)
− (C(N e

1 )− C(N e)) + πχ ·
(
k∗(N e)− k∗(N e

1 )

θ − θ1

)
From definition of N e in Proposition 4, N e is such that

πB
(k∗(N e)− k∗(N e + 1))

(θ − θ)
≤ C(N e + 1)− C(N e)

Since k∗(N) and C(N) are convex, for any N ≤ N ′

πB
(k∗(N)− k∗(N ′))

(θ − θ)
≥ C(N ′)− C(N)

Therefore, since N e ≤ N e
1 ,

πB ·
(
k∗(N e)− k∗(N e

1 )

θ − θ1

)
− (C(N e

1 )− C(N e))

Moreover, since k∗(N) is decreasing,

πχ ·
(
k∗(N e)− k∗(N e

1 )

θ − θ1

)
≥ 0

Therefore, the indirect effect is non-negative, making ∆Λ > 0.
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Figure 5: Federal Reserve Systemically Important Bank holding company categorization
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